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Abstract

Large scale simulations of the movements of people in a “virtual” city and their anal-
yses are used to generate new insights into understanding the dynamic processes that
depend on the interactions between people. Models, based on these interactions, can
be used in optimizing traffic flow, slowing the spread of infectious diseases or predict-
ing the change in cell phone usage in a disaster. We analyzed the data generated from
the simulated movements of 1.6 million individuals in a computer (pseudo agent-based)
model for Portland, OR. This city is mapped into a graph with 181,205 nodes repre-
senting physical locations such as buildings. Connecting edges model individual’s flow
between nodes. Edge weights are constructed from the daily traffic of individuals moving
between locations. The number of edges leaving a node (out-degree), the edge weights
(out-traffic), and the edge-weights per location (total out-traffic) are fitted well by power
law distributions. The power law distributions also fit subgraphs based on work, school,
and social /recreational activities. The resulting weighted graph is a “small world” and
has scaling laws consistent with an underlying hierarchical structure. We also explore the
time evolution of the largest connected component and the distribution of the component
sizes. We observe a strong linear correlation between the out-degree and total out-traffic
distributions and significant levels of clustering. We discuss how these network features

can be used to characterize social networks and their relationship to dynamic processes.

*Los Alamos Unclassified Report LA-UR-02-6658.



1 Introduction

Similar scaling laws and patterns have been detected in networks of scientific collaboration
[1][2][3], cellular networks [4][5], the Internet [6], and the World Wide Web [7][8]. These net-
works exhibit the “small world effect,” [9][10] where the average number of edges needed to
connect any pair of nodes is small and high clustering is observed, a characteristic absent in

random networks [11].

The connectivity distribution of many networks has been captured by power-law distributions,
P(k) < k=7, where the exponent 7 characterizes the underlying scaling of the network and &
denotes the node’s degree or incidence.

Barabési and Albert (BA) introduced an algorithm capable of generating networks with
a power-law connectivity distribution (7 = 3). The BA algorithm generates networks where
nodes connect, with higher probability, to nodes that have a accumulated higher number of
connections and stochastically generates networks with a power-law connectivity distributions
(P(k) o< k~7), in the appropriate scale. We generate a directed graph from the simulated
movement of 1.6 million individuals in or out of 181, 205 locations in Portland, OR. The 181, 205
nodes represent locations in the city and the edges connections between nodes. The edges are
weighted by daily traffic (movement of individuals) in or out of these locations. The statistical
analysis of the network topology reveals that it is a small world with power-law decay in the
out-degree distribution of locations (nodes). The resulting network has scaling laws consistent
with an underlying hierarhical structure [12, 13]. The out-traffic (weight of the full network)
and the total out-traffic (total weight of the out edges per node) distributions are also fitted
to power laws. We show that the joint distribution of the out-degree and total out-traffic
distributions decays linearly in an appropriate scale. We also explore the time evolution of the

largest component and the distribution of the component sizes.

2 Location-based network

A “typical” realization by the Transportation Analysis Simulation System (TRANSIMS) sim-
ulates the dynamics of 1.6 million individuals in the city of Portland as a directed network,
where the nodes represent locations (i.e. buildings, households, schools, etc.) and the directed
edges (between the nodes) represent the movement (traffic) of individuals between locations
(nodes). Traffic intensity is modeled by the nonsymmetric mobility matrix W = (w;;) of traffic

weights assigned to all directed edges in the network (w;; = 0 means that there is no directed



edge connecting node i to node j).
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Figure 1: Activity is the movement of an individual to the location where the activity will be
carried out. (a)work activities, (b)school activities, (d)social activities, and (d)total number of

individual activities as a function of time (hours) of a ‘typical’ day in the city of Portland, OR.

TRANSIMS [14] is a pseudo agent-based simulation model of the movement of individuals
in virtual regions or cities. TRANSIMS simulates the movement of individuals in this virtual
region through the city’s transportation network (mass or car transportation). First, a detailed
representation of the region is created, mobility information for each individual is incorporated
from survey data and the known transportation infrastructure is used to connect the sites. The
simulation is tunned so that movement data, obtained from transportation planning surveys
of detailed information on people’s movement (daily trips), is accurately captured. Data also
include information on activity types (see Figure 1), origins, destinations, routes, timing, and
forms of transportation used. TRANSIMS calculates the simulated movements of 1.6 million
individuals in a typical day [14]. The simulated Portland data set includes the time at which
each individual leaves a location and the time of arrival to its next destination (node). These
data are used to calculate the average number of people at each location and the traffic between
any two locations on a typical day. (Table 1 shows a sample of a Portland activity file generated
by TRANSIMS).

TRANSIMS’ simulation of the network of social interactions is based on the assumption



that the locations of people’s activity choices is constrained by the transportation infrastruc-
ture. The synthetic population is endowed with matching demographic characteristics derived
from data (joint distributions from census data). Observations made on the daily activity pat-
terns of several thousand households (survey data) are used as templates for the modeling of
synthetic households with matching demographics. Locations where activities are carried out
are estimated from observed land use patterns, travel times and costs of transportation alterna-
tives. These locations are fed into a routing algorithm that finds the minimum cost paths that
are consistent with individual choices [15, 16, 17]. The simulation resolution is of 7.5 meters and
1 second. The simulator provides an updated estimate of time-dependent travel times for each
edge in the network, including the effects of congestion, to the Router and location estimation
algorithms, which generate traveling plans. Since the entire process estimates the demand on a
transportation network from census data, land use data, and activity surveys, these estimates
can thus be applied to assess the effects of hypothetical changes such as building new infras-
tructures or changing downtown parking prices. Methods based on observed demand cannot
handle such situations, since they have no information on what generates the demand. Simu-
lated traffic patterns compare well to observed traffic and, consequently, TRANSIMS provides
a useful planning tool.

Until recently, it has been difficult to obtain useful estimates on the structure of social
networks. Certain classes of random graphs (scale-free networks [18], small-world networks
[10, 19], or Erdos-Renyi random graphs [11, 20]), have been postulated as good representatives.
In addition, data based models while useful are limited since they have naturally focused on
small scales [21]. While most studies on the analysis of real networks are based on a single
snapshot of the system, TRANSIMS provides powerful time dependent data of the evolution of
a location-based network. Though social network (mobility) estimates are not strictly speaking
part of TRANSIMS, the level of detail generated in the simulations is such that the aggregation

of the movement of individuals at multiple temporal and spatial scales reveals important trends.



Table 1. Sample section of a TRANSIMS activity file. In this example, person 115 arrives
for a social recreational activity at location 33005 at 19.25 o’clock and departs at 21.00 o’clock.

Person ID | Location ID | Arrival time(hrs) | Departure time(hrs) | Activity type
115 4225 0.0000 7.00 home
115 49296 8.00 11.00 work
115 21677 11.2 13.00 work
115 49296 13.2 17.00 work
115 4225 18.00 19.00 home
115 33005 19.25 21.00 social /rec
115 4225 21.3 7.00 home
220 8200 0.0000 8.50 home
220 10917 9.00 14.00 school
220 8200 14.5 18.00 home
220 3480 18.2 20.00 soc/rec
220 8200 20.3 8.6 home

3 Power law distributions

We calculate the statistical properties of a typical day in the location-based network of this
vitual city from mobility data generated by TRANSIMS (see Table 2).

The average out-degree, k, is k = >_; | ki/n where k; is the degree for node i and n is the
total number of nodes in the network. For the portland network k& = 29.88 and the out-degree
distribution exhibits power law decay with scaling exponent (y ~ 2.7). The out-traffic (edge
weights) and the total out-traffic (edge-weights per node) distributions are also fitted well by
power laws. The average distance between nodes L is defined as the median of the means
L; of the shortest path lengths connecting a vertex i € V(G) to all other vertices [22]. For
our network, L = 3.38, which is small when compared to the size of the network. In fact,
the diameter (D) of the graph (the largest of all possible shortest paths between all the lo-
cations) is only 9. L and D are measured using a breadth first search (BFS) algorithm [23]
on a randomly selected subgraph of size 90, 000 (= 50% the size of the whole network) ignor-
ing the edge directions. The clustering coefficient, C, quantifies the extent to which neighbors

of a node are also neighbors of each other [22]. The clustering coefficient of node i, C;, is given by
ki
ci= 16wl /()
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Figure 2: The nodes represent locations connected via directed edges based on the traffic or

movement of individuals (activities) between the locations. The weights (w;;) represent the

daily traffic from location ¢ to location j.

where |E(T;)| is the number of edges in the neighborhood of ¢ (edges connecting the neighbors
of ¢ not including 7 itself) and (kz’) is the maximal number of edges that could be drawn among
the k; neighbors of node i. The clustering coefficient C' of the whole network is C = Y | C;/n.
For a typical random graph with 181,205 nodes and average connectivity k& = 29.88, the clus-
tering coefficient C ~ k/n ~ 0.000166 [22]. The clustering coefficient for our location-based
network, ignoring edge directions, is C' = 0.0584, which is roughly 350 times larger than C,,4-
Highly clustered networks have been observed in other systems [9] including the electric power
grid of western US. This grid has a clustering coefficient C' = 0.08, about 160 times larger than
the expected value for an equivalent random graph [22]. The few degrees of separation between
the locations of the (highly clustered) network of the city of Portland “make” it a small world

[22, 10, 19].



Table 2. Statistical properties of the location-based network for Portland. The clustering
coefficient seems “small” but it is roughly 350 times larger than the expected clustering co-
efficient for an equivalent random graph of the same size n and average degree k. The small
average distance between nodes L and the significant levels of clustering C' make this network

a “small world.”

Statistical properties Value
Total nodes (n) 181205
Size of the giant component 181192
Total directed edges (m) 5416005
Average degree (k) 29.88
Clustering coefficient (C) 0.0584
Average distance between nodes (L)  3.38
Diameter (D) 9.0

Many real-world networks exhibit properties that are consistent with underlying hierarhical
organizations. These networks have groups of nodes that are highly interconnected with few
or no edges connected to nodes outside their group. Hierarchical structures of this type have
been characterized by the clustering coefficient function C'(k), where k is the node degree. A
network of movie actors, the semantic web, the World Wide Web, the Internet (autonomous
system level), and some metabolic networks [12, 13] have clustering coefficients that scale as
kL.

The clustering coefficient as a function of degree (ignoring edge directions) in the Port-
land network exhibits similar scaling at various levels of aggregation that include, the whole
network and subnetworks constructed by activity type (work, school and social /recreational
activities, see Figure 3). We constructed subgraphs based on activity types. The clustering
coefficient of the subnetworks generated from work, school, and social/recreational activities
are: 0.0571, 0.0557, and 0.0575, respectively. The largest clustering coefficient and closest to
the overall clustering coefficient (C' = 0.0584) correponds to the subnetwork constructed from
social /recreational activities. It seems that the whole network, as well as the selected activity
subnetworks, support a hierarchical structure albeit the nature of such structure (if we choose

to characterize by the power law exponent) is not universal. This agrees with relevant theory
[13].

Understanding the temporal properties of networks is critical to the study of superimposed
dynamics such as the spread of epidemics on networks. Most studies of superimposed processes

on networks assumes that the contact structure is fixed (see for example [24, 25, 26, 27, 28, 29,
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Figure 3: Log-log plots of the clustering coefficient as a function of the out-degree for subnet-
works constructed from work activities, school activities, social activities, and all the activities.
The dotted line has slope —1. Notice the scaling k! for the school and social /recreational ac-
tivities. However, for the subnetwork constructed from work activities, the clustering coefficient

is almost independent of the out-degree k.

30, 31, 32]). Here, we take a look at the time evolution of the largest connected component
of the location-based network of the city of Portland. We observe that the network undergoes
a sharp transition at approximately 6 a.m. (see Fig. 4) in the morning at which a ‘giant
component’ appears. The distribution of the sizes of the components (clusters of locations)
follows a power law that gets steeper in time until it dissolves as the giant componet forms (see
Figure 5).

To identify the relevance of the temporal trends, we computed the out-degree distribution of
the network for three different time intervals: The morning from 6 a.m to 12 p.m.; the workday
from 6 a.m. to 6 p.m.; and the full 24 hours. In the morning phase, the out-degree distribution
has a tail that decays as a power law with v ~ 3 (for the workday v ~ 2.6 and for the full
day v ~ 2.7). The distribution of the out-degree data has two scaling regions: the number of
locations is approximately constant for out-degree £ < 20 and then decays as a power law for

high degree nodes (Fig. 6).
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Figure 4: The size of the largest component (cluster) over time. A sharp transition is observed

at about 6 a.m when people move from home to work or school.

The strength of the connections in the location-based network is measured by the traffic
(flow of individuals) between locations in a “typical” day of the city of Portland. The log-log
plot of the out-traffic distributions for three different periods of time (Fig. 7) exhibits power
law decay with exponents, v ~ 3.56 for the morning, v ~ 3.74 for the workday, and v ~ 3.76
for the full day. The out-traffic distribution is characterized by a power law distribution for all
values of the traffic-weight matrix W. This is not the case for the out-degree distribution of the
network (see Figure 6) where a power law fits well only for sufficiently large degree k (k > 10).

The distribution of the total out-traffic per location, w;’s (w; = ) i w;,;), is characterized by
two scaling regions. The tail of this distribution decays as a power law with exponent v = 2.74
(Fig. 8). This is almost the same decay as the out-degree distribution (y = 2.7) because the
out-degree and the total out-traffic are highly correlated (with correlation coefficient p = 0.94).

4 Correlation between out-degree and total out-traffic

The degree of correlation between various network properties depend on the social dynamics

of the population. The systematic generation and resulting structure of these networks is im-
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Figure 5: Log-log plot of the distribution of the component sizes at different times of the day.

portant to understand dynamic processes such as epidemics that “move” on these networks.
Understanding the mechanisms behind these correlations will be useful in modeling fidelity

networks.

In the Portland network, the out-degree k and total out-traffic v have a correlation coefficient
p = 0.94 on a log-log scale with 95% of the nodes (locations) having out-degree and total out-
traffic less than 100 (Fig. 9). That is, the density of their joint distribution F'(k,v) is highly
concentrated near small values of the out-degree and total out-traffic distributions. The joint
distribution supports a surface that decays linearly when the density is in log. scale (Figure
10).

5 Conclusions

Strikingly similar patterns on data from the movement of 1.6 million individuals in a “typical”
day in the city of Portland have been identified at multiple temporal scales and various levels of
aggregation. The analysis is based on the mapping of people’s movement on a weighted directed

graph where nodes correspond to physical locations and where directed edges, connecting the
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Figure 6: There are two distinct scaling regions for the number of nodes as a function of the
out-degree of the nodes. There are approximately the same number of nodes with out-degree
k =1,2,..10 For k£ > 0 the number of nodes with a given out-degree decays as a power law
P(k) oc k=7 with y ~ 3 for the morning (6 a.m.-12 p.m.), v ~ 2.6 for the workday (6 a.m.-6
p.m.) and v ~ 2.7 for the full day.

nodes, are weighted by the number of people moving in and out of the locations during a typ-
ical day. The clustering coefficient, measuring the local connectedness of the graph, scales as
k! (k is the degree of the node) for sufficiently large k. This scaling is consistent with that
obtained from models that postulate underlying hierarhical structures (few nodes get most of
the action). The out-degree distribution in log-log scale is relatively constant for small £ but
exhibits power law decay afterwards (P(k) o k7). The distribution of daily total out-traffic
between nodes in log-log scale is flat for small £ but exhibits power law decay afterwards. The
distribution of the daily out-traffic of individuals between nodes scales as a power law for all k
(degree).

The observed power law distribution in the out-traffic (edge weights) is therefore, support-
ive of the theoretical analysis of Yook et al. [33] who built weighted scale-free (WSF) dynamic
networks and proved that the distribution of the total weight per node (total out-traffic in our
network) is a power law where the weights are exponentially distributed.

There have been limited attempts to identify at least some characteristics of the joint dis-

tributions of network properties. The fact that daily out-degree and total out-traffic data are
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Figure 7: The out-traffic plots of the location-based network of the city of Portland has a power
law distribution £~ with (a) v &~ 3.56 (morning), v ~ 3.74 (afternoon), and (b) y &~ 3.76

(full day). Hence a few connections have high traffic but most connections have low traffic.

highly correlated is consistent again with the results obtained from models that assume an
underlying hierarhical structure (few nodes have most of the connections and get most of the
traffic (weight)). The Portland network exhibits a strong linear correlation between out-degree
and total out-traffic on a log-log scale. We use this time series data to look at the network
“dynamics” as the activity in the network increases, the size of the maximal connected compo-
nent exhibits threshold behavior, that is, a “giant” connected component, suddenly emerges.
The study of superimposed processes on networks such as those associated with the potential
deliberate release of biological agents needs to take into account the fact that traffic is not
constant. Planning, for example, for worst-case scenarios requires knowledge of edge-traffic, in

order to characterize the temporal dynamics of the largest connected network components [34].
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Figure 10: (a)Joint distribution F'(k,v) plot (b)log. density of F(k,v) plot between the out-
degree k and the total out-traffic v in the location-based network of the city of Portland.
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